منابع مشابه
Moving Least Squares via Orthogonal Polynomials
A method for moving least squares interpolation and differentiation is presented in the framework of orthogonal polynomials on discrete points. This yields a robust and efficient method which can avoid singularities and breakdowns in the moving least squares method caused by particular configurations of nodes in the system. The method is tested by applying it to the estimation of first and seco...
متن کاملVector Orthogonal Polynomials and Least Squares Approximation
We describe an algorithm for complex discrete least squares approximation, which turns out to be very efficient when function values are prescribed in points on the real axis or on the unit circle. In the case of polynomial approximation, this reduces to algorithms proposed by Rutishauser, Gragg, Harrod, Reichel, Ammar and others. The underlying reason for efficiency is the existence of a recur...
متن کاملLeast-Squares Adaptive Control Using Chebyshev Orthogonal Polynomials
where x(t) ∈ D ⊂ Rp and f (x) ∈ R is an unknown function but assumed to be bounded function in x. When the structure of the uncertainty is unknown, function approximation is usually employed to estimate the unknown function. In recent years, neural networks have gained a lot of attention in function approximation theory in connection with adaptive control. Multi-layer neural networks have the c...
متن کاملStable Moving Least-Squares
It is a common procedure for scattered data approximation to use local polynomial fitting in the least-squares sense. An important instance is the Moving Least-Squares where the corresponding weights of the data site vary smoothly, resulting in a smooth approximation. In this paper we build upon the techniques presented by Wendland and present a somewhat simpler error analysis of the MLS approx...
متن کاملMoving Least Squares Coordinates
We propose a new family of barycentric coordinates that have closed-forms for arbitrary 2D polygons. These coordinates are easy to compute and have linear precision even for open polygons. Not only do these coordinates have linear precision, but we can create coordinates that reproduce polynomials of a set degree m as long as degree m polynomials are specified along the boundary of the polygon....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2010
ISSN: 1064-8275,1095-7197
DOI: 10.1137/09076711x